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Application of Differential Synthesis to Design of

Multiaxis Stability Augmentation Systems

Ravymonp C. MonTcoMERY* AND Howarp G. Hatcn JR.§
NASA Langley Research Center, Hampton, Va.

A differential synthesis technique is developed for multiple input linear feedback systems
that allows direct calculation of the set of feedback gains and control interconnects that yield

arbitrarily selected flying qualities parameters.

This is accomplished by parametrically

relating differential gain and interconnect changes to differential changes in flying qualities
parameters. The procedure is illustrated by synthesizing a linear feedback control for the
linearized lateral dynamics of a lifting-body entry vehicle with unaecceptable flying quali-
ties in the unaugmented condition. The differential synthesis method developed in this
paper is suitable for digital computer formulation and is easily adapted to systems of high

order.
Nomenclature

A = differential transition matrix

Ag = leading coefficient of the numerator quadratic in the
¢ /8, transfer function

B(s) = matrix polynomial in s

By, = matrix coefficients of powers of sin B(s)

c = vector containing the d; and a;x coefficients

C = input matrix

Ciy = rolling moment coefficient due to sideslip

Ci,p = damping in roll coefficient

Cy, = rolling moment coefficient due to yaw rate

Cis = aileron rolling moment coefficient

Ciy = rudder rolling moment coefficient

Cug = static directional stability coefficient

Cop = yawing moment coefficient due to roll rate

Car = damping in yaw coeflicient

Cus = aileron yawing moment coefficient

Chs = rudder yawing moment coefficient

Cug = lateral force coeflicient due to sideslip

Cyp = lateral force coeflicient due to rolling velocity

Cy = lateral force coeflicient due to yawing velocity

Cs = lateral force coefficient due to aileron deflection

a

Cys = lateral force coefficient due to rudder deflection

d(s) = characteristic polynomial of 4

dr = coeflicients of powers of s in d(s)

g = vector function of vector g, f(g) = ¢

F = control interconnect matrix

g = vector containing elements of the gain and inter-
connect matrices

G = feedback gain matrix

grad,f = matrix whose element in 7th row and jth column is
of:/9g; .

grad,P? = matrix whose element in ith row and jth column is
AP; / ij

grad,” = matrix whose element in 7th row and jth column is
oP; / bq]-

H = gaugmented differential transition matrix

1 = commensurable identity matrix

I, = rolling moment of inertia

I, = yawing moment of inertia

I.. = product of inertia

K = augmented input matrix
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m = dimension of u

n = dimension of

P = roll rate

Plc,q) = algebraic identities between ¢ and ¢

q = vector of flying quality parameters

r = yaw rate

s = Laplace transform variable

U = input control vector

Up = input control vector to the augmented system

w = weighting matrix

z = state vector

@ik = coefficient of the (n-k)th power of s in the z;/u;
transfer function numerator

B = sideslip angle, deg

8q = alleron deflection, deg

8 = rudder deflection, deg

Mk = commensurable unit vector with 0 in all but kth
position

@, = natural frequency of numerator quadratic in the
¢ /84 transfer function

wg = natural frequency of dutch roll mode

I3 = bank angle, deg

o = scalar used to parameterize gain variations

Ts = gpiral mode time constant

Tr = roll mode time constant

$o = damping ratio of numerator quadratic in the ¢/8,
transfer function

Ca = damping ratio of the dutch roll mode

Subscripts

1,7,k,p,q = scalar components of a vector (used singly) or ele-
ments of a matrix (used doubly)

Superscripts

t = transpose of a vector or matrix

0 = function evaluated at ¢ = 0

1 = function evaluated at o = 1

Introduction

IGH-performance aircraft must be provided with good

flying qualities over the design flight envelope. When
this requirement cannot be met with a given configuration,
automatic control is introduced to alter the stability and
control characteristics of the aircraft so that the flying quali-
ties are improved. In terms of linear system theory, auto-
matic control systems enable alteration of the alrcraft sta-
bility and control characteristics by using feedback and con-
trol interconnect networks that change the pole-zero con-
figuration of aircraft response transfer functions. One prob-
lem in the design of linear control systems is the synthesis
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of the feedback gains and interconnect ratios required to
establish a desirable pole-zero configuration of the aireraft
response transfer functions.

Reference 1 has considered determination of the aircraft
lateral control system gains required to establish a specified
pole configuration. Reference 2 considers the design prob-
lem for multiple input control systems from the standpoint
of optimal control theory but does not provide a general
method for establishing specified pole-zero requirements.

The purpose of this paper is to develop and demonstrate a
direct method for determining gains and interconnect ratios
required to establish a specific pole-zero configuration for a
general multiple-input linear system. The method developed
combines linear systems theory and differential calculus and
is applicable to systems of high order. This method is called
differential synthesis. After the method is formulated, it is
applied to the determination of the gains and control inter-
connects required for establishment of various pole-zero
configurations of the lateral response transfer functions for a
lifting-body entry vehicle.

Analytical Development
Basic System Theory

The basic linearized equations of motion of aircraft, using
state vector notation, take the form of a multi-input system

& = Az + Cu (1)

where x = n-dimensional state vector, u = m-dimensional
control vector, 4 = n X n differential transition matrix, and
C = n X minput matrix.

The Laplace transform of Eq. (1) is

z(s) = (sI — A)7*Culs) 2)
and (sl — A) 1 is of the form B(s)/d(s), where
B(s) = Bisn ' + Bws»2 + ...+ B,

(3)
d(s) = s" + dys*t + dosm ™t + ...+ da

Leverrier’s algorithm for obtaining the B matrices and the
d coefficients appearing in Eq. (3) is presented in Ref. 3 and
below

Bl = I d1
By, = BiA + dl

—trace(B1A)
dy = —itrace(BA)

Il

Bk = Bk,lA + dk_1[ dk = —]}Ctrace(BkA) (4)

Bn = Bn—lA + dn—II dn

Il

1
—ﬁtlace(BnA)

The transfer function between the ¢th component of z and the
Jth component of u from Eq. (2) is of the form
Ti _ @ipns" Tt A st P L+ ae %)
Uj sm 4 d1$"_1 -+ dosn 2 + ...+ da
where the di coefficients can be obtained from Eq. (4) and
the coefficients a;: can be computed from the expression

Aijp = IM’B;;C,U.]' (6)

where w; and y; are commensurable unit vectors with 0 in all
but the 7th and jth positions, respectively. The pole-zero
configuration of the transfer function [Eq. (5)] is implicitly
determined by the coefficients oy and d.

MULTIAXIS STABILITY AUGMENTATION SYSTEMS 337

U u
"R ‘

Fig. 1 System
block diagram.

Statement of the Problem

In order to alter the transfer function coefficients and thus,
the pole-zero configuration a feedback control system is
introduced as schematically illustrated in Fig. 1. The system
has the form

u = Gz + Fu, )

where /' = m X m control interconnect matrix, @ = m X n
linear feedback gain matrix, and u, = m-dimensional input
vector.

When Eq. (7) is substituted into Eq. (1), the system becomes

& = Hzx + Ku, (8)
where
H2A44 CG
&)
K® CF
The system transfer function becomes
x(s) = (s — H) *Kuy(s) (10)

The transfer function between the x; component of z and the
up; component of u, has the same form as Eq. (5) where the
a;x and di coefficients have been obtained by substitution of
H for A in Eq. (4) and K for C in Eq. (6).

The problem considered here is to determine a gain matrix
@ and an interconnect matrix F that result in a specific set
of coefficients a;r and di corresponding to the transfer func-
tion of interest a:/u;.

Method of Solution

One way to determine the matrices @ and F is, after sub-
stituting Eq. (9) into Egs. (4) and (6), to expand the Egs.
(4) and (6) in terms of the elements of G and F' and construct
a set of nonlinear algebraic equations of the form

g =c¢ (11)
Here the transfer function coefficients ¢ are
¢t =A(d,...,dn; Qijt,- .., Qin) (12)
the vector of independent variables g is
G = (G, e ooy Gung e ooy Gmns Sy ooy Sy o e oy ) (13)

and f(g) is the set of nonlinear functions representing the
relationship between the elements of g and ¢. Equation (11)
must then be solved for a set of gain and interconnect matrix
elements that result in a specified ¢ = ¢l

For a complex set of equations such as those representing
alreraft dynamics, Eq. (11) is difficult to construet and not
generally easy to solve. In order to avoid these difficulties,
the method of solution proposed here is to convert the non-
linear algebraic set of equations into a set of implicit differ-
ential equations with known initial conditions. After de-
veloping this method for solving nonlinear algebraic equa-
tions, the authors discovered that M. N. Yakovlev had
suggested this procedure in 1965 (Ref. 4).

In order to best explain the method of conversion to differ-
ential form for solving nonlinear algebraic equations consider
the scalar equation

flg) =9*—3g+2=c (14)

The graph of ¢ vs ¢ satisfying Eq. (14) is presented in Fig. 2.
Assume that the object is to determine a value of g that
satisfy f(g) = 0. First, let both g and ¢ be functions of a
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Fig.2 Graph of the scalar
function defined by Eq.
0l (14).
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dummy variable o which varies between 0 and 1. That is,
¢ = c(o) and ¢ = ¢g(0). The basic idea is to choose an arbi-
trary ¢° = ¢(0) and select a variation c(o) such that it passes
through the point ¢(0) = f(g°) and the desired point ¢(1) = 0.
A typical curve c(o) satisfying these requirements is the
straight line illustrated in Fig. 3. Here ¢(0) was calculated
by substituting ¢ = ¢° = 0 into Eq. (14). Then, the vari-
ation in g(o) required by the identity f[g(c) 1= c(o) is deter-
mined by using a differential form of Eq. (14), which is
{0flg(e)1/0g} [dg(a)/de] = dc(o)/do. For this particular
example using the straight-line variation indicated in Fig. 3
for ¢(o) the derivative dg(s)/do must satisfy

dg(o)/do = —2/(2g — 3) (15)

This equation may be integrated numerically over the in-
terval 0 < ¢ < 1 using the chosen initial condition g(0) = 0.
The value of g at o = 1 satisfies flg(1)] = ¢(1) = 0 and a
solution to the equation f(g) = 0 is obtained.

It is obvious that for the simple example above, it is easier
to solve the nonlinear algebraic equation using the quadratic
formula than to apply a conversion to differential form.
However, for complex linear systems a conversion to differ-
ential form has advantages which will be discussed.

Conversion to differential form can be applied to the syn-
thesis of linear systems by solving Eq. (11) in a manner
similar to that used for the scalar Eq. (14). Assume that
the object is to select a vector ¢! consisting of desired transfer
function coefficients and determine a gain and interconnect
vector ¢g* that satisfies f(g') = ¢'. Let ¢ and g be functions
of the dummy variable ¢ and select ¢(o) such that it satisfies
¢(0) = ¢® where

¢ 2 f(g°)

¢(1) = ¢!, and is differentiable on the internal 0 < ¢ < 1.
The linear function

c(o) = + a(ct — ) (16)

is an example. The variation in g(o) required by the identity
flg(a)] = ¢(o) must satisty the equation

{gradoflg(0)1} [dg(o)/da] = de(o)/do (17

which is Eq. (11) converted to differential form. Equation
(17) is a set of implicit differential equations which are linear
in the derivatives dg/do and which can usually be integrated
numerically over the interval 0 < ¢ < 1 using the initial
conditions g(0) = g¢° The right side of the equation (i.e.,
dc/da) can be thought of as a forcing function requiring g(a)
to follow some path which preserves the identity flg(s)] =
¢(o). Therefore, the value of g(c) at ¢ = 1 should satisfy
the equation f[g(1)] = ¢! and a gain and interconnect vector
g' is obtained that results in a c¢' vector of desired transfer
function coefficients. During integration of Eq. (17), singu-
larities may arise due to the implicit nature of these differ-
ential equations. A discussion of these singular situations
is presented in a following section.

An advantage of this synthesis technique is that the vector
¢ and the matrix grad,f[g(¢)] can be easily formulated using
Leverrier’s algorithm and a differentiated form of this algo-
rithm. Thus, the complicated nonlinear algebraic functions

J. AIRCRAFT

f(g) need not be expanded into scalar form and Eq. (17)
can be constructed as well as solved using a digital computer.
The method of caleulating grad,flg(c)] is presented in a
following section.

Forcing Functions

In order to obtain a suitable forecing function de(o)/do, the
function ¢(¢) must be determined. As previously stated
¢(o) must pass through the initial and desired vectors of
transfer function coefficients. The vector of initial coeffi-
cients is calculated by assuming some initial gain vector ¢°
which is made up of the elements of the gain matrix G and
the interconnect matrix F. TUsually, suitable initial condi-
tions are G = 0 and F = I which is equivalent to the open-
loop system without control augmentation. However, in
some cases when the off-diagonal elements of F are to be
changed, their initial values should be nonzero to avoid
computational difficulties. The selection of desirable coeffi-
cients can be accomplished for the airplane from established
flying qualities parameters. These parameters are deter-
mined by the desired transfer function pole-zero locations.
For other applications similar criteria would have to be ob-
tained to establish a desired value ¢'.

The first function ¢(o) to be used was the linear variation
of Eq. (16). It was found that with the resulting forcing
function

de(a)/do = ¢* — ¢ (18)

integration errors which occur during integration of Eq.
(17) were not reduced but remained uncorrected. However,
the effect of integration errors is reduced by modifying Eq.
(18) so that the slope de(o)/de is continuously updated.
The modified linear forcing function that accomplishes this
updating is

de/do = [t — f(@))/[1 — o] (19)

This function has been used successfully by the authors in
many applications. This closed-loop foreing function greatly
improves the computational acecuracy of obtaining the desired
¢! and thus ¢g'. Equations (18) and (19) are the only two
forcing functions which have been used by the authors;
however, others may be satisfactory.

In some applications, it is desirable to determine the gain
vector g required to specify functions of the transfer function
polynomial coefficients instead of the coefficients directly.
These functions can be the parameters obtained when the
polynomials are factored. To do this requires a modification
of the forcing function as well as the gradient matrix. Con-
sider then the problem of specifying a set of parameters ¢
that are algebraically related to the elements d. and aq of
the vector ¢ by the equation

Pleg) =0 (20)

Cases 1 and 3 in the section on applications are examples in
which this problem arises. Using the same concept developed
to specify ¢, Eq. (20) is formally differentiated to yield

grad,P(dg/do) + grad.P(dc/de) = 0

Hence, from Eq. (17) a relation between the variations in

¢ and the gain and interconnect matrix variations is estab-
lished

grad P grad,f(dg/de) = —grad,P(dg/da) (21)

In Eq. (21), the quantity d¢/do on the right side acts as the
forcing term and is selected arbitrarily. Equation (21) is
then numerically integrated to obtain the vector g(o) re-
quired to obtain the ¢(o) variation selected. The application
of Eq. (21) follows along the same line as that of Eq. (17).
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Gradient Matrix

To construct the matrix grad,f(g), first consider the partial
derivatives of f(g) with respect to the gain matrix elements.
Let d@ represent an infinitesimal change in the gain matrix
G. This change causes infinitesimal changes in the B, ma-
trices and the d;, coeficients of Eqs. (4) when H is substituted
for A. These matrices and coefficients obey the equations

dB; = 0 d(d) = —trace(CdG)
dB, = (dBy)H + B CdG + Id(ds) (22)
d(dy) = —(1/k) trace[(dB)H + BiCdG]

k=23 ...,n

where dB, and d(ds) are infinitesimal changes in the B
matrices and d, coeflicients. A differential form of Lever-
rier’s algorithm has previously been used by Morgan (Ref.
5) to study sensitivity. Equation (22) is linear in the matrix
d@ so that by setting all the d@ elements to zero except
dG,, which is set to unity (dG@ = u,u,'), the result is that
d(dy) = 0dx/dgs and dByr = 0B;/0gp. The partial deriva-
tives 0di/Ogy, are elements of one column of grad,f(g). To
obtain the Oaj1/0¢», elements of the same column the partial
derivatives 0B:/0g,, are used in a differential form of Eq.

(6),
(Qin/Ofpg) = 1t (OB1/0gpe) K (23)

Thus, by repeated substitution, the gradient matrix elements
related to G can be obtained.

Now consider elements of grad,f(g) which are partial de-
rivatives of f{g) with respect to the interconnect matrix ele-
ments f. Note that the coefficients di and the matrices
B;. are independent of the matrix K so that 0di/0fp; = 0
and 0By/0fs, = 0. Hence, from Egs. (6) and (9)

O/ Of g = wi'(OB/Afp) Kpty" + p:BiCOF /Ofpo) s =

" BiCitpitg s
using OF/0f,e = wpie'. Thus,
Qaik wi'BiCu, i=1q
= (24)
o 0 J#q

Again by repeated substitution, the gradient matrix columns
related to /' can be obtained.

Singularities

During the integration of Eq. (17), there may be instances
in which the determinant of grad,flg(e)] goes to zero. At
these singular situations, there is a restricted set of variations
in ¢(o) that can be realized by variations in ¢g(s). That is,
the variations in ¢(g) are not completely arbitrary and in
some Instances the desired ¢* may not be obtainable. A
thorough investigation of these singular situations has not
been undertaken; however, it is known that they arise when
g(o) passes through a local maxima or minima of the elements

Table 1 Vehicle configuration and aerodynamic data®

I, = 1710 slug — {12 Weight = 10,000 lbs
I, = 7600 slug — ft? Wing span = 15.25 ft
I., = 500 slug — ft?2 Wing area = 180 ft?2
Cy, = —0.15 Cny = 0 Cypp = 0
C, = 0 C, = —02 Cy, = 0
Cg = —0.05 Chg = 0.05 Cyg = —08
Ci;, = —0.015 Crs, = 0.02 Cyp, = O
Ci; = 0.005 Crg, = —0.02 Cys, = 0.04

e Body axis aerodynamic coefficients are in rad.
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Fig. 3 Graph of the c(¢) g
variation selected and the = | g
g(¢) variation which re- =
sults from the solution of 2
Eq. (15). - . n
®25 50 75 10

o

of f(g) or when the poles or zeros of the transfer functions
being altered changes from pairs of complex roots to pairs of
real roots and vice versa. Two techniques have been used
to avoid or bypass these singularities. These are applicable
only when the number of transfer function coefficients being
varied is less than the total number of gain and interconnect
matrix elements available. In order to explain these tech-
niques, first assume that only feedback gains can be altered.
Further assume that there are eight gains available and only
six transfer function coefficients are to be altered. Con-
ceptually, only six gains should be required to alter six co-
efficients, but in order to avoid singularities, seven gains are
allowed to vary.

The first technique used to avoid singularities is based on
minor determinants of grad,f(g). During each integration
step, any six of the seven chosen gains are allowed to vary
with the seventh remaining constant at its last value. The
combination of six gains can change from step to step and is
chosen at the beginning of each step by determining which of
the seven possible six by six gradient matrices has the largest
determinant. Using this procedure gain combinations which
result in gradients with determinants near zero are avoided
and thus, singularities are avoided. This technique was used
for all the examples presented in the application section.

The second technigue used to avoid singularities utilizes
optimum methods to calculate dg(o)/do. The performance
index [dgt(0)/da](W/2){dg(o)/do] is minimized subject to
the constraint of Eq. (17). Applying basic optimization
techniques

dg/do = W= grad,f(g) [grad,f(g) W grad,'f(g)]dc/do

Here, all seven of the chosen gains vary during each integra-
tion step and the weighting matrix W can be used to place
more or less emphasis on a particular gain. This technique
has been used successfully in all applications attempted and
requires significantly less computer time than the first
technique.

It should be noted that the solutions for g obtained by this
synthesis technique are not unique. This is illustrated by
the example of Fig. 2. The result of integrating Eq. (15)
with the initial condition g(0) = 0 leads to the solution g(1) =
1. However, the initial condition g(0) = 3 is also appropriate
for Eq. (15) but it leads to the result g(1) = 2. The two
techniques used to bypass singularities also have nonunique
results. In these cases, however, the solution obtained rep-
resents only one of a complete family of possible solutions.

Applications

The differential synthesis technique developed in the pre-
ceding section was applied to determining feedback gains
and control interconnect ratios to obtain various pole-zero
configurations for the transfer functions related to the lateral
response of a lifting-body entry vehicle. A flight condition
at a Mach number of 1.8, an altitude of 60,000 ft, and an
angle of attack of 15° was used in this study. Table 1 con-
tains the vehicle configuration and aerodynamic data used,
The linearized aireraft lateral equations of motion used can
be found in Ref. 6 and were formulated according to Eq. (1)
int‘h xt ;\ (xlvx21x3}x4) = (pyd);ryﬁ) and Ut i(uhu?) = (6%67)'

One of the important indicators of the quality of lateral
response is the bank angle to aileron transfer function. Flight
and simulator experience has shown that seven flying quality
parameters in this transfer function influence pilot opinion
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Table 2 Coefficients and flying quality parameters
for the ¢/§, transfer function

23"

%24~

DENOMINATOR COEFFICIENTS
@
T

NUMERATOR COEFFICIENTS

A Yl/rﬁ f’“¢

104,

100/, [
F
N1/

o 1 1 | L J 4 1
(e] 2 4 & 8 10 . o 2 4 6 8 10
o a

~
oL iy,

FLYING QUALITY PARAMETERS
N
T

FLYING QUALITY PARAMETERS
o

Fig.4 Variation of ¢/5, transfer function coefficients and
flying quality parameters with o.

of lateral response. These are Ay, &5, we, 7o, 7+, (o, and @y
which appear in the bank angle to aileron transfer function

o] Ap(s? + 20 pwgs + we?)

e _ 25
0o [s + (/7)]1ls + (1/7,)1(s? 4 2¢awas + wa?) @5)
When written in the form of Eq. (5), this equation is
2 _ L2 _ 0198* + 2138+ aa1g (26)
6o U St dis? 4 des® 4 dss + da

If the flying quality parameters are unsatisfactory, the co-
efficients d;, and a.: can be adjusted so that desired flying
quality parameters are obtained. Desirable flying quality
parameters for the ¢/8. transfer function were based on
information found in Refs. 7 and 8 which indicate that
pole-zero cancellation is desirable in order to obtain good
response. Numerical values of the desired flying qual-
ity parameters used in the study as well as those of the basic
vehicle are listed in Table 2. The lateral response of the basic
vehicle is unacceptable at this flight condition because of
roll reversal indicated by the negative value of wy? Also,
the value of 1/7, indicates the roll subsidence damping is too
low and the value of {, indicates the dutch roll mode damping
is too low. This basic case has been selected since it demon-
strates some design problems that may be encountered.

Ilustrative Example

An example case is presented in detail to illustrate the
mechanics of the application of the synthesis technique pre-
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Fig. 5 Variation of feedback gains with ¢.
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Coefficients
Basic Desired
dy 0.57 2.41
ds 11.17 10.37
ds 3.43 13.60
ds 0.043 0.14
@2 —7.14 e
o213 —1.32 —6.43
oo14 17.89 —64.30
Flying quality parameters

1/7s 0.013 0.01
1/7, 0.296 1.5
Ca 0.039 0.15
wdq 3.33 3.0
Ae —7.14 @
¢o b 0.15
wg b 3.0
wg?/wq? —0.226 1.0

2 Not specified.
b For the basic case, the numerator quadratic in the ¢/8, transfer function
has two real zeros: 1/7¢, = 1.68 and 1/7¢, = —1.5.

sented. For this example, the objective was to determine &
gain matrix G required to obtain particular values of all
the numerator and denominator coefficients except ass of
Eq. (26) using a control interconnect matrix of F = [. Thus,
six coefficients were changed and the vector ¢ was of the form
¢t = (dyds,ds,ds,ans,ang). Since only six coefficients were
to be changed, in concept only six gain matrix elements should
have been required. However, to avoid singularities in the
gradient matrix of Eq. (17), seven feedback gains were em-
ployed. Hence, for this example all gain matrix elements
were used except 6,/¢ and Eq. (17) was implemented with
gt =) (11,912,915, 014,921,g23,02) = <5a/P;5a/¢’;5u/7',5a/ﬁ;5r/p,5r/7'a

For this example, the initial conditions at ¢ =0 corresponded
to the unaugmented aireraft with G = 0 and F = I. The
closed-loop form of the forcing function on the right side
of Eq. (17) d¢/do = [¢* — f(¢)]/(1 — o) was used with ¢!
taken as the list of desired coefficients contained in Table
2. Equation (17) was then numerically integrated from
o = 0to o = 1in steps of 0.1 using a fourth-order Runge-
Kutta integration process. The variation of the coeflicients
(components of ¢) with ¢ is illustrated in Fig. 4. This shows
that the selected linear variation in ¢(o) with o was followed
very closely by f(g) and that the components of ¢ at ¢ = 1
were equal to the components of ¢!. Figure 4 also illustrates
the variation of the associated flying quality parameters with
o that results from the linear variation of the coefficients.
Note that at ¢ = 0 the numerator polynomial has two real
zeros 1/74, and 1/74,. As o increases the real zeros meet
and then break away into a pair of complex zeros at ¢ =
0.22.

The gain variations that were calculated to establish the
coefficient variations of Fig. 4 are shown in Fig. 5. From
o = 0to o = 0.2, six gains were varied and the §,/r gain was
held constant at zero. In the neighborhood of ¢ = 0.22,
a singularity occurred in the gradient matrix because of the
change in analytic form of the numerator polynomial and
the integration process could not continue holding 8./r = 0.
However, this singularity was avoided and the integration
step was completed by holding the é,/p gain constant and
allowing the remaining six gains to vary. The numerical
integration process may be slightly inaccurate in the neigh-
borhood of this singularity; however, due to the closed-loop
programing of the coefficient variations this inaccuracy has
little effect on the outcome of the integration process at o =
1. From ¢ = 0.3 to ¢ = 0.7, the 8,/r gain was again held
constant. Another type of singularity occurred in the neigh-
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Table 3 Feedback gain and control interconnect
matrices that yield pole-zero configurations selected

Sa/p da/¢ da/r da/B

_ [ 8a/sap 8a/5 -
Ul S Rl I o

~ L.6r/8ap 8r/8rp

cwr p-[1y 0] e-[032 8 038 4]
cwerr=[h 4] e-[BE 0 0 CiB
Cased F = [}439 (1’] ¢~ [ 0288 —o00 0149 60'537]
cus 7= [y °™] o= [0 0 0% -

borhood of ¢ = 0.7. This is evidenced by the rapidly decreas-
ing §,/p gain. By holding §,/p constant and allowing the re-
maining six gains to vary, the integration process was con-
tinued to ¢ = 1. At ¢ = 1, the gains that yield the desired
numerator and denominator coefficients of Eq. (26) were
obtained. Although in this case seven gains were used to
change six coefficients, in some cases the additional gain may
not be necessary. A Control Data Corporation (CDC) 6000
series digital computer was used to obtain the results for this
case and the run time was 8 sec.

Flying Quality Considerations

A short analytical flying qualities study is presented here
to illustrate the variety of design objectives that can be estab-
lished using the synthesis technique presented. Four differ-
ent sets of design objectives were used to obtain four control
systems that would improve the vehicle lateral response
characteristics. The lateral response of the basic vehicle to
a 5° step aileron input is shown in Fig. 6. This figure illus-
trates the problems of roll reversal, induced sideslip, and
underdamped roll subsidence and dutch roll modes.

For case 1, the design objective was to modify the stability
and control characteristics so that the desired values of 1/7,,
1/7+, {4, wa, and we? which arelisted in Table 2 were obtained.
This was accomplished by changing the d, da, ds, di, a1s, and
paus coefficients.  The feedback gains 8./p, 8./7, 8./p, and 6,/r
and the interconnect 48,/84, were used. The set of feedback
gains used were selected since rate feedback is a common form
of stability augmentation. The initial value of 8,/6.,at ¢ = 0
was taken as unity. This case illustrates specification of a
funetion of the coefficients w5, as opposed to specifying
the coefficients themselves. Here, the ratio ows/cms was
specified rather than ag» and ams individually to obtain the
desired wg? The gain and interconnect matrices calculated
to meet the design objective are presented in Table 3. The
response of the augmented vehicle to a 5° step dq, input is
shown in Fig. 7. Although the roll reversal problem has
been corrected, there is still a significant induced sideslip.
Other control system designs were studied using different
combinations of gain matrix elements. It was found that
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Fig. 6 Time history of the response of the basic vehicle
to a 5° step aileron input.
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Fig. 7 Time history of the response of the augmented
vehicle of case 1 to a 53° step aileron input.

the induced sideslip could be significantly reduced using the
gain elements 8./p, 84/8, 8:/p, 8,/

Case 2 illustrates the design objective of obtaining pole-
zero cancellation in the ¢/, transfer function using feedback
only. 'This case was previously presented as the illustrative
example. The gain matrix calculated to meet the design
requirements is presented in Table 3 and the response of the
augmented vehicle to a 5° step 8., input is presented in Fig.
8. TFigure 8 illustrates that the p and ¢ responses are good
but there still remains an undesirable 8 transient. This
indicates that the flying quality parameters specified in this
example were not adequate for insuring turn coordination.

Since only the G matrix was used in case 2, case 3 was
undertaken specifying the same flying quality parameters but
including a control interconnect as a possible means of
eliminating the B response shown in Fig. 8. Instead of
specifying the values of the numerator coefficients, the func-
tions oms/ o and aoys/ass were specified to obtain the de-
sired 2{sws and wy?, respectively. The gain and control
interconnect matrices calculated to obtain the desired flying
quality parameters are shown in Table 3 and a time history
of the lateral response to a 5° step 8., input is presented in
Fig. 9. Note that the undesirable 8 transient has almost
been eliminated from the response. Hence, 8 is almost de-
coupled from the 8., inputs. This occurs since the resulting
values of the numerator coefficients in the 8/8q, transfer func-
tion are very small.

In case 3, the B8 transient has almost been eliminated from
the aileron input. It may also be possible to eliminate the
bank angle transients from rudder inputs. This “decou-
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Fig. 8 Time history of the response of the augmented
vehicle of case 2 to a 5° step aileron input.
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Fig. 9 Time history of the response of the augmented
vehicle of case 3 to 5° step aileron input.

pling”” design has been the subject of study by several authors
(e.g., Ref. 9). The synthesis technique presented herein can
be applied to the decoupling problem by specifying that the
numerators of the 8/8., and ¢/8,, transfer functions vanish.
However, to accomplish this and still specify vehicle stability
characteristics more gain and control interconnect matrix
elements are required than are available. It was noted that
if Cys, were neglected, enough gain and control interconnect
matrix elements would be available to decouple the lateral
response and specify stability characteristics. Therefore,
setting Cys, = 0, a gain and control interconnect matrix was
calculated that yielded the desired stability characteristics
and also set the numerators of the 3/8., and ¢/, transfer
functions to zero. Results of this study (case 4) are illus-
trated in Tables 3 and 4. Table 4 shows that, in addition
to making the 8/8., and ¢/é., transfer function numerators
vanish, pole-zero cancellation occurred in all transfer func-
tions. In all aileron response transfer functions except
B/84, (which was identically zero), the dutch roll mode was
canecelled and in all rudder response transfer functions ex-
cept ¢/6,, (which was identically zero) the spiral and
roll mode roots were cancelled. These characteristics are
altered insignificantly when the gain and control inter-
connect matrices calculated were used in the augmented
vehicle with (s, Included. It was thus determined that al-
though exact decoupling while specifying all stability char-
acteristics was not possible, for this example, a very nearly
decoupled system could be obtained. The response of the
vehicle to a 5° step aileron input 8., is shown on Fig. 10.
Also the vehicle response to a 5° step rudder input §,, is
illustrated in Fig. 11. These figures show that the 8 response
has been practically eliminated from aileron input and that
bank angle response has been practically eliminated from

&

Q \\ —-—80

R

& ——

W

e |

o

“ | I L ! 1 L I I I

fol

& 20 2

Y

g ol o

@ ST T T T T T T T T T s s s e e ©

S N o

s -20- ¥\\ -2 8

< AN ——0 o

g “ E—

o -40- ~N 11 .4

<Q ~ B

3 N

[}

S -g0l | 1 | h | I I | |

< o 1 2z 3 4 5 € 7 8 9 16
TIME, SEC

Fig. 10 Time history of the response of the augmented
vehicle of case 4 to a 5° step aileron input.
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Fig. 11 Time history of the response of the augmented
vehicle of case 4 to a 5° step rudder input.

rudder input. An alternative approximate decoupling was
studied retaining Cys,, specifying all the lateral stability char-
acteristics, and further specifying that all numerator coeffi-
cients of the ¢/é,, and 8/8., transfer functions be zero except
the s® coefficient of the /8., transfer funetion numerator.
The resulting vehicle responses to step inputs 8., and 8,, ob-
tained through this procedure were indistinguishable from
those on Figs. 10 and 11 and the calculated gain and inter-
connect differed only slightly from those calculated for case 4.

Conclusions

A differential synthesis technique has been developed for
multiple input linear feedback systems that allows direct
compulation of the set of feedback gains and control inter-
connects that yield arbitrarily selected flying qualities
parameters. This was accomplished by parametrically relat-
ing differential gain and interconnect changes to differential
changes in flying qualities parameters. The procedure has
been illustrated by synthesizing a linear feedback control
for the linearized lateral dynamics of a lifting-body entry
vehicle with unacceptable flying qualities in the augmented
condition.

At the present time, the computational method of syn-
thesizing feedback controls presented in this paper is limited
to systems of the type illustrated in Fig. 1. Extensions of
this method to include dynamic elements in place of the con-
stant ' and G elements of Fig. 1 are areas of future research.
In addition, analytic studies into establishing general meth-
ods of treating problems with singular gradient matrices are
needed.

Table 4 Transfer functions for case 4

d(s) = (s + 0.01)(s + 1.5)(s? + 0.9s + 9)
P8, = —4.8(st + 0.95 + 9)(s — 0.005)/d(s)
¢/8a = —5.1(s2 4+ 0.9s + 9)/d(s)

r/8, = —1.3(s2 4 0.9s 4+ 9)(s 4+ 0.07)/d(s)
B/8a = 0

p/8: = 40.5(s + 0.01)(s + 1.5)(s + 0.09)/d(s)
/6, = 0

r/8 = —1.9(s 4 0.01)(s + 1.3)(s + 0.09)/d(s)
B/6, = +2.0(s 4 0.01)(s + 1.5)/d(s)
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Flight Test Evaluation of an Advanced Stability
Augmentation System for B-52 Aircraft

Joun B. DEMPsTER* AND JaMmEs 1. ARNoLp T
The Boeing Company, Wichita, Kansas

Results and comparisons with theoretical predictions are given for a flight test performance
evaluation of an advanced stability augmentation system (SAS). The new SAS, developed
for installation in the B-52G-H fleet, provides control of low-frequency structural modes as
well as the conventional control of airplane rigid body motions. Flight test results are pre-
sented showing the SAS performance in terms of mode damping, fatigue damage rates, maxi-
mum expected stress, and ride quality for flight through turbulence. Comparisons are made
between theoretically predicted and experimental results. The flight test results show sig-
nificant reductions in dynamic response to turbulence with the advanced stability augmenta-
tion system. Reductions in response of the low-frequency antisymmetric structural modes
and the Dutch roll mode were obtained with SAS. Lateral loads on the fin and aft fuselage
during flight through turbulence were reduced by more than 209,. Fatigue damage rates
due to turbulence were reduced more than 509, for these same structural locations. The
flight control system configuration and test procedures used to evaluate the SAS performance

are presented.

Introduction

AN Air Force sponsored study was conducted by The
Boeing Company during 1964 and 1965 to determine
the changes to the 3-52 flight control and stability augmenta-
tion systems that would provide meaningful improvements
in the airplane structural life and in aerodynamic and struc-
tural stability in severe turbulence. This study was con-
ducted as a part of a eontinuing program to provide B-52
fleet longevity and effectiveness to meet Air Force require-
ments during the next decade. The results of the study
program, available in August 1965, indicated that significant
reductions in structural fatigue and peak loads could be ex-
pected if an advanced stability augmentation system were
installed on the B-52.

Development of the prototype stability augmentation
system was accomplished during 1966 and 1967. Reference
1 summarizes SAS analyses and synthesis. Structural
analyses conducted and a summary of the analytical results
obtained are presented in Ref. 2. The system selected for
development included both pitch and yaw stability aug-
mentation.

A prototype model of the advanced SAS was designed,
fabricated, and installed on a B-52H flight test airplane.

Presented as Paper 68-1068 at the ATAA 5th Annual Meeting
and Technical Display, Philadelphia, Pa., October 21-24, 1968;
submitted October 24, 1968; revision received February 20, 1969.

* Structures Engineer, Wichita Branch. Associate Fellow
ATAA.

1 Control Systems Engineer, Wichita Branch.

Flight testing of the prototype SAS was completed in 1967 to
optimize and demonstrate the SAS performance in terms of
reducing peak structural loads and fatigue damage rates.
The optimization was accomplished within the boundaries
of adequate handling qualities and dynamic stability of the
airplane.

The following sections present a general description of the
flight control system configuration, the flight test approach,
and results obtained. The flight test included flutter, SAS
optimization, and performance testing. Performance testing
included evaluation of handling qualities (Ref. 3) and dynamie
response to atmospheric turbulence. General results ob-
tained during gust response testing are described in this
paper, including comparisons to analytical predictions.

Prototype SAS Configuration

A general description of the existing B-52 fleet flight con-
figuration, which includes a yaw damper, is given in Ref. 2
along with study ground rules, SAS variations considered,
and the SAS configuration selected for prototype flight test-
ing. The two axis SAS consists of structural and rigid body
motion sensors, and hydraulic actuators to position the
elevator and rudder. These same hydraulic actuators also
position the control surfaces on command from the primary
flight control system and autopilot.

The yaw SAS functional configuration, illustrated in Fig. 1,
utilizes a yaw rate gyro located at Body Station 695 (wing
rear spar to body intersection) and a lateral accelerometer
located at Body Station 1719 (stabilizer rear spar to body



